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ABSTRACT

We prove that the restriction of a probability measure invariant under a
nonh yperbolic, ergodic and totally irreducible automorphism of a com-
pact connected abelian group to the leaves of the central foliation is
severely restricted. We also prove a topological analogue of this result:
the in tersection of ev ery proper closed in variant subset with dacentral
leaf is compact.

1. Introduction

A continuous automorphism « of an additive compact abelian group X is
expansive if there exists a neighbourhood N(0) of the identity 0 € X with
N,ez " (N(0)) = {0}, irreducible if every closed a-invarian t subgroupt” ¢ X
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is finite, totally irreducible if every nonzero pow erof « is irreducible, and
ergodic if it is topologically transitive (and hence ergodic with respect to the
normalized Haar measure Ax of X).

In this paper w estudy the collection of invarian tneasures of a nonhyper-
bolic, ergodic and totally irreducible automorphism of the n-torus T" or, more
generally, of a nonexpansive, ergodic and totally irreducible automorphism a of
a compact connected abelian group X. Every nonhyperbolic, ergodic and irre-
ducible automorphism a of T™ is partially hyperbolic in the usual sense! with
the additional property that its derivative Da preserves the length of vectors in
E.. For an arbitrary nonexpansiwe, ergodic and totally irreducible continuous
automorphism a of a compact connected abelian group X these ‘sub-bundles’
can be more complicated objects (due to the fact that the group need not be
locally connected), but an analogue of this strong form of partial hyperbolicity
also holds in this more general situation.

Let a be a nonexpansive, ergodic and totally irreducible automorphism of a
compact connected abelian group X. The normalized Haar measure Ax of X
is obviously invariant under «, and Y. Katznelson [6] proved that the measure-
preserving system (X, a,Bx,Ax) (where Bx denotes the Borel sigma-algebra
of X)) is measure-theoretically isomorphic to a Bernoulli shift.

There is another family of — admittedly not very interesting — a-invariant
ergodic probability measures on X: let X(©) € X be the dense central subgroup
of a defined in (3.3), on which «a acts isometrically. Then the closure of the
a-orbit ofan y element 2 € X(©) is a compact a-invariant subset of X9 (and
hence of X) on which a acts with a unique a-invariant measure denoted by A, .

It is not immediate how to construct other invariant measures; in fact, the
main result inthis paper shows that all a-invariant probability measures y #
Ax on X satisfy a somewhat surprising rigidit y phenomenon related to the
scarcity of invarian t measuresunder a multidimensional abelian semigroup of
toral endomorphisms. This scarcity of invarian t measureswas conjectured by
H. Fursterberg and is still open, though there are important partial results
by several authors including D. Rudolph [9] for the one-dimensional case and
A. Katok and R. Spatzier [5] in the higher-dimensional case.

1 A C? diffeomorphism f of a Riemannian manifold M is partially hyperbolic
if there is a D f-invariant splitting TM = E; @ E. ® E,, of the tangent manifold
TM of M in which at least t w o of the sub-bundles are notrivial, so that Df
uniformly expands all vectors in E,, uniformly contracts all v ectors in E,, and
the vectors in E. are neither expanded as strongly as any vector in E, nor
contracted as strongly as any vector in E,.
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In order to describe this rigidity property we use a construction from [5] to
define a system of ‘conditional’ measures on the leaves of the central foliation
induced by an a-invarian tmeasure p on X. In general, if w estart with an
a-invarian t probabilif measure pu on X, these leaf measures will only be sigma-
finite. Indeed, for u = Ax, the induced measure on each central leaf is the
(infinite) Haar measure on the leaf. OQur main result is that the leaf measures
are finite for any a-invarian t probabilitmeasure p on X which does not contain
a copy of Ay in its ergodic decomposition.

THEOREM (Theorem 5.1): . Let a be a nonexpansive, ergodic and totally irre-
ducible automorphism of a compact connected abelian group X with normalized
Haar measure Ax, and let u be an a-invarian t probabilit measure on X which
is singular with respect to Ax. Then the conditional measure p, on the central
leaf through = (defined in (4.20)) is finite for almost every x € X.

Both the statement and the proof of Theorem 5.1 are modelled on Host'’s
proof of Rudolph’s Theorem in [3] and its generalization in [4].

The following tw o definitions can easily be adapted to the general setting of
partially hyperbolic maps.

Definition 1.1: Two a-invarian tprobability measures up, s on X are cen-
trally equivalent if they have an invarian t joining (i.e., an (a x a)-invariant
measure ¥ on X x X which projects to u; and us, respectively) so that, for
v-ae. (z,y) € X x X, z and y lie on the same central leaf; in other words,

z—ye X forvae. (z,y) € X x X,

where X (9 C X is the central subgroup of a defined in (3.3).

Definition 1.2: An o-invarian tprobability measure p on X is virtually
h yperbolicif there exists an a-invarian t Borel setZ C X with u(Z) = 1 which
intersects ev ery cemral leaf in at most one point, i.e., with Z N (z + Z) = 0 for
every z € X(0),

In Section 6 we pro e that Theorem 5.1 implies the following result.

THEOREM 1.3: Let a be a nonexpansive, ergodic and totally irreducible
automorphism of a compact connected abelian group X with normalized Haar
measure \x, and let u be an a-invarian probability measure on X which is
singular with respect to A\x. Then the following conditions are satisfied.
(1) There is a virtually hyperbolic a-invariant probability measure ' on X
which is centrally equivalent to p.
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(2) If p is w eaklymixing (or, more generally, if the point spectrum of the
action of a on L?(X,8,u) con tains noeigenvalue of a of absolute value
1), then u is virtually hyperbolic.

(3) If u is ergodic, but not necessarily weakly mixing, w ewrite, for every
z € XO X, for the unique a-invariant probability measure on X (©) — and
hence on X — concentrated on the compact orbit closure {a"z : n € 7.} of

z under o.. Then i is an ergodic component of ji' ¥\, for some zo € X () 2

Finally, in Section 7 w eprove the following topological analogue of the
Theorems 1.3 and 5.1.

THEOREM (Theorem 7.1): . Let a be a nonexpansive, ergodic and totally
irreducible automorphism of a compact connected abelian group X. Then any
closed a-invariant subset Y C X intersects ev ery certral leaf in a compact subset
of the leaf.

ACKNOWLEDGEMENT: This research has been supported in part by NSF grant
DMS 0140497 (E.L.) and FWF Project P16004-N05 (K.S.). During part of this
w ork, both authors receied support from the American Institute of Mathemat-
ics and NSF grant DMS 0222452. We would furthermore like to express our
gratitude to the Mathematics Department, University of Washington, Seattle,
the Newton Institute, Cambridge and ETH Ziirich for hospitality during parts
of this work, and Doug Lind for some interesting and useful discussions.

2. Irreducible group automorphisms

Let a and 8 be continuous automorphisms of compact abelian groups X and
Y, respectively. Then a and 3 are conjugate if there exists a continuous group
isomorphism ¢: X — =Y with

(2.1) Bod=poa,

and f is a factor of a if there exists a continuous surjective group homomor-
phism ¢: X — =Y satisfying (2.1). The map ¢ in (2.1) is called an (algebraic)
conjugacy or an (algebraic) factor map. The automorphisms a and 3 are

2 More precisely: for every zo, the ergodic decomposition of p' x 5\10 gives a
probability measure v on the space M1 (X) of probability measures on X, where
w e consider M1 (X) as a compact metric space using the usual weak™ topology.
Then for an appropriate choice of zg, the measure p is in the support of v.
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weakly conjugate if eac h of them is a factor of the other, andfinitely equiv-
alent if each of them is a factor of the other with a finite-to-one factor map.

We recall a few basic facts about irreducible ergodic automorphisms of com-
pact abelian groups. Let Ry = Z[u™!] be the ring of Laurent polynomials with
integral coefficients. We write every h € R; as

(2.2) h = Z hou™
meZ

with h,, € Z for every m € Z and h,,, = 0 for all but finitely many m.

Let o be an automorphism (always assumed to be continuous) of a compact
abelian group X with (additive) dual group X, and let & be the dual automor-
phism of X defined by

(aa, z) = {(a,azx)

for every z € X and a € X, where (a,z) denotes the value of a € X at z € X.

Forewry h=73% _,h,u" € Ry, z € X and a € X w e set

(2.3) h(a)(x) =Y hpaz, h(a)(a) =) h,d"a,

nez neZ

and note that

—

(2.4) (h(@)(a), z) = (h(a)(a), ) = (a, h(a)(x)).
The dual group X is a module over the ring R; with operation
(2.5) h-a = h(&)(a)

for h€ Ry and a € X. In particular,

(2.6) u” - a=a"a

for m € Z and a € X. This module is called the dual module M = X of
a. Conversely, if M is an Rj-module, we obtain an automorphism aj,; on the
compact abelian group

(2.7) Xy=M
whose dual automorphism is defined by

(2.8) aya=u-a

for ev erya € M.
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Examples 2.1 ([11]): (1) Let M = R;. Since Ry is isomorphic to the direct sum
>-7Z of copies of Z, indexed by Z, the dual group X = f{\l is isomorphic to the
cartesian product T? of copies of T = R/Z. We write a typical element » € T
as © = (z,) with x,, € T for every n € Z and choose the following identification

of Xg, = Ry and T%: for every z = (z,,) in T” and h =Y, _, hpu™ € Ry,

(2.9) (z,h) = e2™ Xnezhnn,
Under this identification the automorphism a g, on X, = TZ becomes the shift

(2.10) (TZ)m = Tm+1

with m € Z and o = (2,,) € Xg, = T%.

(2) Let I C R; be an ideal, and let M = R;/I. Since M is a quotient of
the additive group Ry by an &g, -invarian t subgroup, the dual groupXj, is the
apg,-invarian t subgroup

XRl/I:]l = {2 € Xp, =T%: (x,h) =1 for every h € I}

= {m e T”: Zhnzm+n =0 (mod 1)
(2.11) ner
for every h € I and m € Z}

= {2 € T”: h(r)(z) = 0 for every h € I},

and ap, /; is the restriction of 7 = ap, to Xg, /1 C T = Xg,.
We can express (2.11) as

(2.12) Xpyyr = X/1=1"= (| ker(a(r)).
hel

If I = (f) = fR; is the principal ideal generated by some f € R, then (2.12)
becomes

(2.13) X i) = X/(F) = (F)* = ker(f(r)).

(3) Let a be the automorphism of the m-torus X = T™ = R /Z™ defined
by a matrix A € GL(m,Z). Then the dual module M = X is equal to Z™ with
operation f-m = f(AT)(m) for every f € Ry and m € Z™ (cf. (2.5)), where
AT € GL(m,7) is the transpose matrix of A.

The automorphism « is irreducible if and only if the characteristic polynomial
f=fot+ -+ fmoru™ " +u™ of Ais irreducible, and « is conjugate to ap, /()
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if and only if A is conjugate in GL(m, Z) to the companion matrix

0O 1 - 0 0
0O 0 - 0 0
(2.14) Cp=| @ i : : € GL(m,Z).
0 0 -« 0 1
—fo —fi 0 —fm2 —fma

THEOREM 2.2: Let a be an irreducible automorphism of an infinite compact
connected abelian group X . Then there exists a unique irreducible polynomial
f=fo+ -+ fou™ € Ry with the following properties.
(1) n>1, f, >0 and fy #0;
(2) a is finitely equivalen tto apg, /sy, where (f) = fRy C Ry is the ideal
generated by f (cf. Example 2.1 (2));
(3) « is ergodic if and only if f is not cyclotomic (i.e., f does not divide u™ —1
for any m > 1);
(4) « is expansive if and only if f has no roots of absolute value 1;
(5) «a is totally irreducible if and only if f has no tw odistinct roots whose
ratio is a root of unity.
Conversely, if f = fo + -+ fou™ € Ry is an irreducible polynomial satisfying
condition (1) above, then the group Xg, sy in (2.11) is connected and the
automorphism ag, /5y of Xg, /(y) is irreducible.

Proof: The statements (1)—(4) and the converse follo w from [11, Proposition
2.7 and Theorem 29.2].

For the proof of (5) we note that a is totally irreducible if and only if ag, /(s
is totally irreducible. Since oz}fgl/(f) is dual to multiplication by u™ on X =
Ri/(f) =M, AR5y 18 irreducible if and only if the subgroup

N =A{h(u™):heRi}/(f) CR/(f)=M

has finite index in Ry /(f). As the group M is torsion-free, the latter condition
is equivalent to the statement that N ®, Q = M ®z Q = Q", and hence to the
condition that the elements {(1 + (f)), (u™ + (f)),..., (@™ 4+ (f))} in M
are rationally independent. In other words, a}_’gl/(f) is reducible if and only if
one can find a nonzero element (kq, ..., k, 1) € Z™ with

(2.15) g(u™) =ko+ k™ + -+ p_qu™ 1 (f),

where we may assume without loss of generality that the resulting polynomial
g € Ry is irreducible. By evaluating (2.15) on any root 6 of f w e obtain that
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g(6™) = 0 for every root 6 of f, and Galois theory shows that the degree of g is
equal to the number of distinct elements in the set Q;m) = {6™ : bis a root off}.

This proves that O‘gl/(f) is irreducible if and only if the cardinality of Q;m) is
equal to n, which implies (5). |

Example 2.1 (2) gives an explicit representation — up to finite equivalence
— of every irreducible automorphism of a compact connected abelian group X.
For an alternative description we follow [2] (for background see [10], [11, Section
7] and [12]).

Let a be an irreducible automorphism of an infinite compact connected
abelian group X, and let f € R; be the irreducible polynomial appearing in
Theorem 2.2. We fix a root §# € Q of f, denote by K = Q(#) the algebraic
number field generated by 6, and write P, P;K) and P(EOK) for the sets of
places (= equivalence classes of valuations), finite places and infinite places of
K. For every place v of K and every valuation ¢ € v, the v-adic completion
K, of K (i.e., the completion of K with respect to metric d(a,b) = ¢(a —b)" for
some suitable v > 0) is a locally compact, metrizable field and hence a locally
compact additive group. We fix a Haar measure A\, on the additive group K,
and denote by mody, : K, — =R the map satisfying

(2.16) Ao(aB) = mody, (a)y (B)

for every a € K, and every Borel set B C K,. The restriction of modg, to K
is a valuation in v, denoted by | - |,.

Let
(2.17) P={ve P 9|, #1}, S=PLIUP.
For every infinite place v € PQSOK), the v-adic completion K, is either equal to R
or to C (in particular, K, = C for any v € S(©)). We write

(2.18) ly: K ==K, (=RorC)

for the embedding of K in its completion K, and use the same symbol ¢, to
denote the corresponding identification of K, with R or C.
The set

(2.19) w =[] &»
vES

is a locally compact algebra over K with respect to coordinate-wise addition,
multiplication and scalar multiplication (with scalars in K). We write every
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weW as w = (wy) = (wy,v € S) with w, € K, for every v € S and define
2.20 = .

(2.20) ] = ma o, ,

Let 8 be the automorphism of W given b y

(2.21) Bw = (1,(0)wy)
for every w = (w,) € W.
We put
(2.22) R={a€eK :l|al, <1forevery v € P¥) S} Do,

where oy is the ring of integers in K, and denote by
(2.23) v K — =W

the diagonal embedding a + t(a) = (1,(a)){sesy, for any a € K. By abuse of
notation we identify eac hK,,v € S, with the subgroup

{w e W :w, =0 for every v' v} C W.

THEOREM 2.3: Suppose that « is an automorphism of an infinite compact
connected abelian group X. Then « is irreducible if and only if there exist an
element § € Q* = Q\ {0} and a finitely generated Z[#*']-submodule L C K =
Q(0) such that « is algebraically conjugate to the automorphism (4 1y on the
quotient group

(2.24) Yy, =W/u(L)

induced by 3 (cf. (2.17) (2.21)).

(1) The following conditions are equivalent.
(a) a is ergodic,
(b) 6 is not a root of unity.

(2) The following conditions are equivalent.
(a) «a is expansive,
(b) the orbit of § under the action of the Galois group Gal[Q : Q] does

not intersect S = {z € C: |z| = 1}.

(3) The following conditions are equivalent.
(a) X =2 T" for somen > 1,
(b) § =P,
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(c) 6 is an algebraic unit.
(4) The following conditions are equivalent.
(a) « is totally irreducible,
(b) the orbit of @ under the action of the Galois group Gal[Q : Q] does
not contain t w o distinct elemets whose ratio is a root of unity.

Proof:  [2, Corollary 3.5], [11, Theorem 7.1 and Propositions 7.2-7.3] and
Theorem 2.2 in this paper. |

COROLLARY 2.4: In the notations of Theorem 2.3, for any § € Q* and finitely
generated 7[6*']-submodule L. C K = Q(6), and any S’ C S there is an auto-
morphism ¢ of Y, commuting with (4 1) so that 1) expands the subgroup

Ws ={weW :w, =0 for everyv € S\ S'}.

Proof: Let R D o be the ring of S-integers as in (2.22). We claim that there
is a 7 € R so that

(2.25) ||, >1 forallve S

Indeed, if € a unit in o, or more generally if S’ C PéoK), 2.25 is a direct
consequence of the Dirichlet unit theorem, and the general case follows from
the extension of this theorem to the S-arithmetic context that can be proved in
the same way [12, Chap. 4, Th. 9].

Since L is a finitely generated Z[#*!]-submodule and 6 generates K, it follows
that L is commensurable to R, ie., [L : LN R],[R : LN R] < oo. Define
7: W — W using 7 as in (2.21); since 7 € R themap 7 preserves R, and so
a suitable power of 7, which without loss of generality we can assume to be T
itself, preserves L.

It follows that ¢ = f3(; 1) is an automorphism of Y7 commuting with S )
with the required properties. |

3. Structure and examples of nonexpansive automorphisms

Let a be a nonexpansive irreducible ergodic automorphism of a compact con-
nected abelian group X. We apply the Theorem 2.3 and assume that

(3.1) a= Py, X=W/M(L),

for some # € Q* and some finitely generated Z[#*!]-submodule L C K = Q(6).
Denote by Ax the normalized Haar measure of X and write

(3.2) W — =X =W/u(L)
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for the quotient map (cf. (2.17)-(2.24)). In the notation of (2.17) and (2.19) we
set

SO ={veS:|0, =1} c P,
WO = {w=(w,) € W :w, =0 for every v € S~ S}
~ [ &, =cs"),

veS®)

(3.3)

The central subgroup group X(® C X is a-invarian tand dense by
irreducibility. Furthermore, since |L/i(R)] < oo (cf. (2.22) and [2]) and
L(R)NWO) = {0} by the product fornmla ([1, Theorem 10.2.1]), LNW(©) = {0}.

Examples 3.1: (1) Let a be a nonexpansive irreducible ergodic automorphism
of X = T™ defined by a matrix A € GL(m, Z) with real eigenvalues 6., ..., 0,
and complex eigenvalues €., 11,0 415 - > Oy tmos Omy +my» Where m = my +
2my, and where 8; is the complex conjugate of 8; for i = mq + 1,...,m; +ma.
We fix an eigen valueéf of A, set K = Q(f), and obtain that S = PécK)7 W =

R™ x C™2, and that

WO = b C

j=mq141.....mq+mg
l6j1=1

is the subspace of W = R on which A acts isometrically. Since « is ergodic,
dimg (W) < dimg(W) —2 =m — 2.

T ale, for example, the irreducible ergodic and nonexpansive automorphism
a of X = T* determined by the matrix

€ GL(4,Z).

_ o O =
— O = O
—= =0 O

If > 1 is the dominant eigenvalue of A, then the algebraic number field K =
Q[f] has tw oreal places vy,vy (corresponding to the real roots §; = 6 and
B = 01 of the ¢ haracteristic polynomialf = u* — u® — u? —u + 1 of A) and
one complex place vz (corresponding to the tw o complex rootsfs and 5 of f
of absolute value 1). Then S = {3}, W =~ K, = C, and the cen tral
subgroup X(© C X of a is a densely embedded copy of C.

For another example of this form w etake the automorphism a of X = T®
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defined by the matrix

€ GL(6,%Z)

_ O O O oo
_ O O OO
= O OO -=O
—_— OO O = OO
— O = O OO
—_ -0 00O

with dominant eigen valué) > 1. The algebraic number field K = Q[f] has tw o
real places vy, vs (corresponding to the real roots 6y = 6 and 6, = =1 of the
characteristic polynomial f = u% — u® —u* —u® —u? —u + 1 of B) and tw o
complex places vs, vy (corresponding to the four complex roots 63,6, and 63,6,
of f of absolute value 1). Then S = {vz, 0}, W = K, ¢ K,, = C?, and
the central subgroup X (® C X of a is a densely embedded copy of C2.

(2) Let f = 5u® —6u+5 € Ry, and let o = g, (s be the automorphism
of the compact connected abelian group X = Xp, /) defined in (2.11). Since
f is irreducible and all roots of f have absolute value 1 (they are of the form
0= % +1- %), a is ergodic and nonexpansive by Theorem 2.2. If 6 is a root of
fand K = Q(), then P c P, 8O = PO W = WO x [, p, K,, where
W© = C and [, p K, is zero-dimensional, and X = W/L for some discrete
co-compact [-invarian t subgrou, C W. In this example the central subgroup
X©) © X is a densely embedded copy of C.

(3) Let f = 6u* 4+ 3u® + 10u* + 6u+ 6 € Ry, and let a = ag, /) be the
automorphism of the compact connected abelian group X = Xp /s defined
in (2.11). Again f is irreducible, all roots of f have absolute value 1, and « is
ergodic and nonexpansive by Theorem 2.2. If 6 is a root of f and K = Q(6),
then P ¢ P, 8O = PUY W = WO x [, p Ko, where W = € and
[I.,cp Ko is zero-dimensional, and X = W/L for some discrete co-compact [3-
invarian t subgroupl, C W. Here the central subgroup X C X is a densely
embedded copy of C2.

The group W () = C5" | in (3.3) is an algebra with respect to coordinate-wise
addition and multiplication. We define a map 1: K — =W by setting

_ Ju(a) ifvesS©
o(a): {o ifve S\ SO

for everya € K (ctf. (2.18)), set

(3.4) €= 10(6).
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where 6 is the algebraic number appearing in Theorem 2.3 and (3.1), and denote
by

(3.5) F={m:meZ}

the closure of the multiplicative subgroup {¢™ : m € Z} € W(© . Then T is a
compact abelian multiplicative subgroup of W(©). For every v = (v,) € I’ we
denote by M,: W© — 5w © multiplication by v, l.e.,

(36) Myw = ('Yvw'u)

for ev eryw = (w,) € W,

ProOPOSITION 3.2: If « is totally irreducible, then for any tw o distinct elemeits
v,v" € SO, the natural projection of T' to K, & K, is surjective.

Proof: Let &, be defined by

_ [0 forv=uw,
(&) = {0 otherwise.

Clearly the projection of T' to K, & K, is equal to {£J, :m € Z}. Let & =
1,(f) € C and &, = 1,/(f) € C. Since v,v' € SO we know that [&,| = [&,| = 1
(cf. (2.18)).

In order to prove our claim it suffices to show that, for any nonzero element

(m,m') € 72,

(3.7) erem # 1.

That & # 1 for m # 0 follows from ergodicity (&, is a root of an irreducible
polynomial with integer coefficients, which is noncylotomic if « is to be ergodic).
T opro e (3.7) for the case where both m,m’ # 0, w enote that since &, and
&, are conjugate under the Galois group of the splitting field of the polynomial
f, we also have that &} = ;ml for some &3 € C with f(&) = 0 (it could be
that & = &,). We can now apply the same argument for £ and obtain that
&r = f;ml for some root &, € C of f, etc. Since f has finitely many roots,
we will eventually get an equation of the form §§”k = fj(-*ml)k for some positive
integer k and some root &; of f. As all roots of f are conjugate under the Galois
group, this shows that
gt ="

If m* # (—m’)* then @ is a root of unity, which is a contradiction to ergodicity.
Otherwise m = +m’, and either £ = {7} or ' =€,
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First suppose that £" = &7. Since v and v’ are inequivalent valuations,
& # &y, and hence fvfal is a nontrivial root of unity, contrary to the hypothesis
that « is totally irreducible (cf. Theorem 2.2).

If & = &,™, then the complex conjugate {' = &, of &, is again a root of f

satisfying that £™ = ¢, and the same argument as above shows that fvf’fl is
a nontrivial root of unity. Again this violates the total irreducibility of a. |

4. Conditional measures on the leav es of the central foliation

We assume that o and X are of the form (3.1) and use the notation of (2.17)—
(2.24). Write F for the foliation of X by the cosets of the cen tral subgroup
XO = z(W©) c X (cf. (3.3)), and fix a nonatomic a-invarian probability
measure py on the Borel field 8 = Bx of X. Note that w edo not make any
assumptions regarding ergodicity of p.

Since the central subgroup X(® is dense by irreducibility, the foliation of
X into cosets of X(© has no Borel cross-section, and one cannot generally
decompose p directly into a family of measures supported on the individual
leaves of F. In order to overcome this difficulty w ebreak up each of these
leaves into countably many atoms of an appropriate sub-sigma-algebra A C §,
decompose the measure u with respect to this sigma-algebra, and re-combine
the conditional measures supported by the individual atoms on each leaf into a
leaf-measure.

It will be necessary to work not just with one such sigma-algebra A but with
a sequence (A®) k > 1) of sigma-algebras whose atoms consist of larger and
larger pieces of leaves of 7. In order to describe these sigma-algebras we fix an
integer ¢ > 1 with |¢|, = 1 for every v € P and set A = %L C K. Then «(A)
is a discrete co-compact subgroup of W (cf. (2.23)), and we choose a Borel set
A C W with compact closure such that

AN(A+(a))=0 for every nonzero a € A,
(4.1) UA+ua)=w

a€A

The first equation in (4.1) implies that the restriction to A of the map 7: W — —
X in (3.2) is injective, and that m(A) is therefore a Borel subset of X. After
replacing A by A + wq for some wg € W, if necessary, we may take it that the
sets

(4.2) Q={n(A+a)):a€A}
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form a Borel partition of X into N = |L/qL| sets with the following properties.
(i) p(0Q) =0 for every Q € Q;
(ii) for every a € A, the restriction of the map 7 in (3.2) to A+(a) is injective,
and (A + «(a)) = 7(A + «(a')) if and only if a — ' € L;
(iii) for every Q € Q and w € W, the set W(© N (77(Q) — w) is a countable
union of sets with disjoint and compact closures.
Let T, denote the map

(4.3) Tyx=z+y

for every x,y € X. We denote by By ) (w,r) the ball of radius » > 0 around w
in W(®): while it will not be important for us which norm we use in W the

natural norm to take is
4.4 =
(14) ol = s o,

(cf. (2.20)). Finally, we write Bx(x,r) for the ball of radius r around = in the
leaf 2 4+ m(W () of F ie.,

(45) B]-‘({E, 7“) =z + W(BW(O) (0, ’f‘)) = Tx o 7T(BW(0) (0 7“))

PROPOSITION 4.1: There exist a sequence of fundamental domains (A(”),n >
1) for (A) and a corresponding sequence of partitions (Q(™,n > 1) of X in
(4.2) with the properties (i)—(iii) abo e, such that

(4.6) Y Q@+ 7(Biww(0.n)AQ) <27
Qeg™
for ev eryn > 1.

Proof: Let A C W be a fundamental domain for A such that the corresponding
partition Q satisfies conditions (ii)—(iii) above and such that

(4.7 Ax(0Q) =0 for every @ € Q.

Let B(;,1) be an automorphism of X commuting with a expanding WO asin
Corollary 2.4. Set A, = BfT";L)(A) with corresponding partitions Q,,. Clearly
these also satisfy (ii) (iii); furthermore, since Q satisfied (4.7), if k, increases
fast enough we can guarantee that

> Ax((Q+ m(Byw (0,n) AQ) < 27"
QeQ.,
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for ev eryn > 1. Since for any tw o Borel setsQ, B C X,

/u((Q 45+ B)A(Q+5)dAx (s)

- / Lot (1) = 1gus(@) du(e)drx (s)
—\(Q+B)AQ),

where 194545 and 1g4 s are the indicator function of the sets Q+s+B and Q) +s,
there is a sequence (z,,,n > 1) so that the translated partitions Q™ = Q, +z,,
satisfy (4.6) and the conditions(i)—(iii) for every n > 1. F or later use we choose
a bounded sequence (w,,n > 1) in W with n(w,) = x,, for every n > 1 and set
A = A, +w,,n>1. ]

Definition 4.2: Let A C § be a countably generated sigma-algebra, and let
C C A be a countable algebra which generates A. The atom [2]4 of a point
x € X in A is defined as

Zla= () C= [] A

ceC:zeC AcA:zeA

LEMMA 4.3: Foreverym > 1, let A" be the fundamental domain for t(A) C W
and Q™ the partition of X described in Proposition 4.1. Then there exist a
countably generated sigma-algebra A™ C 8§ with

(4.8) [#]aco =7 (AT + (@) N (WO +w))

for everyx € X, where [z] 4 is the atom of A™ containing =, and a € A,
w € W satisfy that m(w) =z and w € A" + 1(a).

Proof: Fix a € A for he moment. We set W' = (]],cs_sw Ky), denote by
ke W = WO x W — W' the second coordinate projection (cf. (3.3)), and
write By for the (countably generated) Borel field of W’. The sigma-algebra
A={k1(B)N(A+(a)) : B€ Bw:} of subsets of A + (a) is again countably
generated, and its atoms are of the form (A + t(a)) N (WO +w),w € A + i(a).
Since the restriction of m to A + «(a) is injective, = maps A to a countably
generated sigma-algebra Ag of subsets of Q = 7(A +1(a)) € Q™) whose atoms
are of the required form. The sigma-algebra A(™ is defined as the unique sub-
sigma-algebra of § = Bx which contains the partition Q™) and induces Ag on
each Q € Q™). |
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For any countably generated sigma-algebra A C 8 w e consider the decomposi-
tion of p with respect to the sigma-algebra A, i.e., a set of probability measures
{uzt -2z € X} on X with the following properties.

(1) For all z,2' € X with [2]4 = [2'] 4,

py =y and g ([z]a) = 1.
(2) For every B € 8, the map z + uz'(B) is Borel (and hence A-measurable).
(3) For every bounded Borel map f: X — =R,

/ fdpd = B, (f14)(2)

for p-a.e. x € X, where E,(-|-) denotes conditional expectation.
In order to make notation less cumbersome we set, for every n € Z and k > 1,

(4.9) AP = a (AW,

VA

(*) (*) )
and denote by {uf”’ cx € X} and {uf * :x € X} the decompositions of
(k)

u with respect to the sigma-algebras A%k) and A®) v A7 | respectively.

Definition 4.4: A Borel measure p on W) is locally finite if p(C) < oo for
every compact set C C W© . Let M, (W) be the set of all locally finite
(and hence sigma-finite) Borel measures on W (| furnished with the smallest
topology in which the map p — [ fdp from M (W) to R is continuous for
every continuous map f: W — SR with compact support. In this topology
Moo (W©) is a separable metrizable space.

For every w € W(® | we denote by

(4.10) Tyo=v+w

the translation by w on W . The maps p — pT,, and p — pf are homeo-
morphisms of My, (W (?) for every w € W(®) where § is defined in (2.21).
F or the next theorem, ve take rg to be large enough so that

(4.11) [z] 4y C Bx(z,10)

for all z € X (cf. (4.5)).

PROPOSITION 4.5: There is a Borel map x — p, from X to M. (W) and
an a-invariant Borel set X' of full u-measure with the following properties (for
notation we refer to (2.21), (4.9) and (4.10)).
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(1) Forevery z € X', every bounded Borel set B C W(®) and every sufficiently
large k,

1 AR

(4.12) pz(B) = mﬂz

(Ty o w(B));

(2) for every z € X,

(413) Pz = pazB:,

(3) there exists a Borel map K,: X x W© — SR so that, for every x € X'
and every w € W) with x 4+ n(w) € X',

(414) eK#(x7w)px—7r(w) = psz-
We begin the proof of Proposition 4.5 with a lemma.

LEMMA 4.6: There exists a Borel set X' C X with u(X') = 1, which is invariant
under T,, for every w € W | so that for all z € X' and r > 0,

(415) B]:($.,T‘) C [l’}j{(k}
for every sufficiently large k.

Proof: The set
Nyy={x€ X :Br(x,r) € [x] a0}

is equal to
U @n@+7Bwo0m) = U (@ +7(Bww(0.r) Q)
Q.Q'ea® Q'eQk)
Q£Q!
c U (@ +7Bww(0.1)AQ),
QeQm)

and hence Borel. Since >, u(Ny) < oo for every r > 0 by (4.6), it follaws

that
X'=x~UJ MU~

r>0n>1k>n

is a Borel set of full measure. F rom the definition of X' it is also clear that any
x € X' satisfies (4.15), and that X' consists of a union of full F leaves, i.e., that
it is invariatt under T}, for any w € W0, |

Proof of Proposition 4.5: We take X' to be the set of all z € X with the
follo wing properties.



Vol. 144, 2004 INVARIANT SETS AND MEASURES 47

(1) For every r > 0 and n € Z, and for every sufficiently large £ > 1 (depend-
ing on r and n),

(416) Bj:($,7‘) C [I}A;k);

(2) for every k,1>1and n € Z,

() AD
(4'17) M:’;l ([z]f{(l')\/‘/{sp> >0, pz” ([I}A(A:)VAL”) >0,
I'I’A(L‘)VA”) = 1 : MA(k)|
T ,Uél(k) ([z]f{(k)\//{g» T [Z}A(A;)vﬂg)
(4.18) 1 A
=0 “Ha 2] a0
Mé‘{n ([$]A(k)\/‘/{51” Aalk)yay,
(k) AD _— (k)
where pZt \[I]A”‘)Mg) and fiy \[I]A”‘)Mg) are the restrictions of p7!

0
and ,ufn to the atom [z] , ), ;) of z in Ak VA%[);
(3) for every k > 1 and n € 7Z,

(k) k)

A (
(4.19) o = g, @

Note that by (4.11) and (4.17) (with I =1 and n = 0),
()
,uf (Bf($7’f‘0)) >0
for everyk > 1 and z € X'. F urthermore, by (4.16) and (4.18) (again with
n=0),

1 A("')| _ 1 Au)‘
Nf”')(B}‘(UC,To))'ux [Z] 1)y a0 u;{(l)(Bf($7rO))um

for all z € X' and all sufficiently large k,1, so that

1 (k)
4.20 B)= lim —————— " (T, o (B
( ) px( ) koo /Jél(m(B}‘($,7‘0))uz ( x ( ))
exists for every € X' and every Borel set B C W9,
Equation (4.14) easily follo ws from the fact that, for everyz € X', every
w e WO with 2 — n(w) € X', and every sufficiently large ,

y=xz—m(w) € [x] 40,

and hence
0)

AF - q (k)
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The sequence

p ) (Br(a = w(w).r0)) g 1A (B (x — m(w), o))
™ (Br(x,10)) ™ (Br(2,10))

is eventually constant, and we set

log

()
limy,_, o log e (Br—m(w)ro)) for 2 e X' and w € W©

' = wt ™ (B (.10))
Ku(@,w) with z — 7(w) € X',
0 otherwise.
Equation (4.13) is immediate from (4.16), (4.18) and (4.19) (with & = | and
n=1).
Finally, we extend the map x — p, to X by settingp, = 0for every z € X~ X'
and note that the resulting map from X to M. (W(®) is Borel. ]

5. Finiteness of the central leaf measures

THEOREM 5.1: Let a be a nonexpansive, ergodic and totally irreducible
automorphism of a compact connected abelian group X with normalized Haar
measure Ax, and let i be an a-invarian t probabilif measure on X which is sin-
gular with respect to Ax. Then there exists a Borel set X' C X with u(X') =1
such that p,(W©) < oo for every x € X' (cf. (4.12)).

We begin the proof of Theorem 5.1 with a series of lemmas in which we denote
the I-th derivativ e of a map f by f().

LEMMA 5.2: For every s > 1 w e can find a constait A; > 0 such that, for every
polynomial p(x) = 212;81 ayx’ of degree < 2s — 1 and every € > 0,

) > A, - Hag]).
S Ip(t)] > As Oggrgsgl(@ )

Proof: The statement of the lemma is clearly unchanged by rescaling p and ¢,
so that we may assume that ¢ = 1 and max; |a;| = 1. We can now set

2s5—1

A = inf{ sup |p(t)] : p(z) = Z ajx' with max|q| = 1} > 0. 1
te(—1,1) = L

LEMMA 5.3: Let ¢ > 0, s > 1, and let A; > 0 be the constant appearing in
Lemma 5.2. Then

AsB
5.1 su ) > ———
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for every B > 0 and every map f: (—¢,e) — =R with 2s derivatives at every
point such that

B
(1) ll _
(5.2) Ogrlr%agi(_l (@) > = for ev eryt € (—¢,¢)
and
(5.3) sup |f?9(t)] < A;B/e*.
te€(—e,e)

Proof: Consider the Taylor expansion

2s5—1

)
1=0 ’

of f of degree 2s — 1. From Lemma 5.2 we know that there is some t € (—¢,¢)
with |p(¢)] > AsB/(2s — 1)!, and Taylor’s Theorem allows us to find a £ € [0, 1]
with

(26)
0 =t + S e,
Thus ) )
|F@)] > |p(t)] — & - (t;gp )\f(zs) ®)]) / (2s)!
A,B AB_  A,B
— > [ |

T (2s—1) (2s)! T 2(2s = 1)V
LEMMA 5.4: Let p(t) = >;_, (ax cos(2rmyt) + by sin(2rmyt)) be a trigono-
metric polynomial, where the my.k = 1,...,s, are distinct positiv ein tegers.
Let ||p|| = maxy=1,.. s(Jax + ibx|). Then there exists a constant cy > 0, which

1,...,s, such that

1
(5.4) [ et <o il
0

Proof: We first claim that, unless all coefficients a; and by are 0, the derivative

p' of p does not have zeros of order > 2s — 1. Indeed,
p(t) = Z(—l)l(%rmk)m (ak cos(2mmyt) + by sin(2mmyt))
k=1
for everyl > 0. If p®*)(tg) = 0 for I = 1,....s, the nonsingularity of the
V andermonde matrix (due to our lypothesis that the my are all distinct) implies
that

ay, cos(2mmyto) + by sin(2wrmyto) = 0
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for k=1,...,s. Similarly, if p?*~Y(ts) =0 for I =1,...,s, then
—ay sin(2rmyto) + by cos(2mmyty) =0

for k =1,...,s, and by combining these statements w e get thatay = by = 0 for
k=1,...,s. In fact, this argument gives more: since one can bound the norm of
the in verse of the ¥ndermonde matrix for all choices 0 < my < --- <my < M
by some function of M, there exists a constant ¢}, > 0 depending only on M,
such that

D) > ¢
Jmax [P (O] = el

for ev eryt € R and every choice of the coefficients ay, by, in p.

T rivially there exists, for eery [ > 0 and M > 1, a constant ¢; 5, > 0 such
that

P (0] < e allpl

foreveryl >0 and t € R.

In order to complete the proof of Lemma 5.4 w erecall the van der Corput
Lemma in [7, p. 220]: if ¢ is a real-v alued function on an iterval [a,b] C R with
a monotonic derivativ e satisfying that¢'(t) > A > 0 for every t € [a, b], then

b
. 4
Wt < —.
[ emoaf <5

Since a trigonometric polynomial of degree M such as p”(¢) can have at most
2M roots in the interval [0, 1), the interval[0, 1] can be divided into at most
2M + 1 subintervals I, I, .. ., on each of which p’ is monotonic. By applying
the van der Corput Lemma on each of these subinterv als separately w ehave
that, for any A > 0,

1
; M+4
55 | [ emnan < L o< <1 o) < ap,
0
where A is the Lebesgue measure on R.
It remains to estimate A({0 <t < 1: [p'(¢)] < A}). In fact, w eclaim that
there exists a constant ¢’ > 0 with

A\ ms

(5.6) Mo<t<tpwl<ap <e()7
lIpll

for ev eryA > 0. Estimates of this kind can be found, e.g., in [8]; for completeness

we provide a proof below.
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As p' is monotonic on every subinterval I},
L=L,n{0<t<1:[p'(t) < A}

is connected and hence an interval, and w eapply Lemma 5.3 with f = p' on
some sufficiently small subinterval I}/ C I;,. The conditions (5.2) and (5.3) are
clearly satisfied for some B = ||p|| - A(I}/)?*~!, and Lemma 5.3 guarantees the
existence of a constant ¢; > 0 with

A> sup p'(t) > el lpllA(T) >
tel]

or
M) e T (o)

By summing over k w e obtain (5.6).
According to (5.5) and (5.6),

™ 2 A Nz=1
emp(”dt‘ <S+d (=),
‘/0 A (le\>

and by taking A = ||p||'/?>* w e get (5.4). |
We deriv e from this the follwing estimate.

LEMMA 5.5: For every nontrivial ¢ haractera € X there exists a constant cq >0
with

[ @m0ty < e, - min, ] -/2)

r

for ev eryw € W), where s = |S(®)|, and where T' and M., are defined in (3.5)
and (3.6).

Proof:  We recall that W =[], . K., consider each K, (by abuse of notation)
as an additive subgroup of W, and identify X with W/.(L) as in (2.24). Let a
be a nontrivial ¢ haracter of X = W/i(L), and let f: w — f(w) = (a, w(w)) be
the corresponding character of W. We write fo = f|y 0 for the restriction of f
to W, The isomorphisms ¢,: K, — —=C,v € S in (2.18) allow us to write
fo: W©) — C as the map

Wi fo(w) = 27 ues Rlarin(w)

where a, € C for everyv € S, and where R denotes the real part. Since
the image 7(K,) of K, is dense in X for every v by irreducibility, fo

K, is a
nontrivial ¢ haracter, hencea, # 0 for every v € S,
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Let v, v’ be distinct elements of S(©. By Proposition 3.2, the projection of T
to K, @ Ky € WO maps T onto the set

{w € W : |wy| = |wy | =1 and all other coordinates are 0}.
Hence there exists a closed one-dimensional subgroup
To = {(t;"(z™))pesw : 2| =1} T c W©

such that the irtegers m,,v € S, are all distinct.
Now we use Lemma 5.4 to check that there exists a constant ¢ with

1 Fr— .
‘ F(Myw)dy| = / TR e avto (W)™ ) gyl < o] 71/28
To 0

for every w € W(® and by integrating over I we see that

‘ [ st = ‘ / f(Mmew)d%dv‘
r I'JTy
<co [l oy = ool
T

LEMMA 5.6: For every nontrivial ¢ haractera € X there exists a constant ¢, > 0
such that

(5.7) /1"

for every probability measure 7 on W), where s = |S(9)],

2
dy

/ (a, 7 (M. w))d(w)
W)

< ¢+ [ min(1, ||w — w'||~"/?®)dF (w)dF (w')

Proof: By Fubini’s theorem,

J

2

dry

| tamtw)ir(w)

o
=[] ] syl w0 ar ) )iy

- /W /W / (a. 7 (M, (w0 — w')))dydr (w)dr ().

From Lemma 5.5 wve know that there exists a constant ¢, > 0 with
[ @m0, 0 = w )y < e minL - w2
r

for ev eryw # w' in W), and by integrating we obtain (5.7). |
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COROLLARY 5.7: Let 7 be a probability measure on W), z, € X, and let
p= (Fn YT _,, (so p is supported on the central leaf through x). For ev ery
N € N we set

1 N1
PN = N ; pa’.

Then for every nontrivial c haractera € X

2

lim sup / (a. 2)dpn (2)

N—oo

<o /min(l, l[w — w' ||~/ dr (w)dr ('),
where ¢, is as in Lemma 5.6.

Proof: By Cauchy-Sc hw arz,

2 1N71 2 1N71 ) 2
[eniota) =|5 3 [romint| < 53| [tasapita
i=0 =0
1N—1 2

The map
o | [ amtnd ) w)

from I' to Rt is continuous and bounded, so by the unique ergodicity of the
action of 3 on T’

N—1 2 2
1 .
~ Z / (a, 7(w))dr 3" (w) —>/ / (a,m(w))dT M| dy.
N = Jwo r|Jwo
We can now apply Lemma 5.6 to conclude the proof of this corollary. |

Proof of Theorem 5.1: Consider the a-invarian t Borel set
B={z:p.(W")=oc}.

We will show that

1
(5.8) p'=——pulp = Ax
Mol
whenever u(B) > 0.
Assume therefore that pu(B) > 0, and let X’ C X be the a-invarian t Borel

set of full measure described in Proposition 4.5. From (4.14) it follavs that, if
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x € BN X', then any other point in X' N (z — 7(W(®))) also lies in BN X"
Hence

u(B) € {0,1}

for p-a.e. x € X and every k > 1. We can thus choose, for every k£ > 1, a set
B® ¢ A®) with

w(B® A B) = 0.
We fix temporarily a large number r > 0 and a small ¢ > 0. According to

(4.15) there exist an increasing sequence (ng, k > 1) of natural numbers and a
Borel set D C B with y/(D) > 1 — € so that, for any € D and k > 1,

[x]j{(""k) + 7T(BW(U) (07 71)) - [x]f{(""k+1) )

A1)

0 < py ([z] g + 7(Bww (0,7))) < e

(in the second of these conditions we use the fact that p, (W () = oo for ev ery
x € B). ForeveryK > 1 and x € X we set

K
- 1 ()
K _ A
k=1

Since B(") ¢ A is equal to B (mod ) and hence also (mod zi/), and since
u' is a-invariant, we have that

(ny,) n
= [ @

for everyk > 1 and n € 7Z, and hence that

(5.9 W= [ K amdy )

for everyK > 1 and n € Z. We define 7/ € M, (W) by
7o (C) = 1,5 (Tu o w(C))

for every Borel set C' C W), where 7 and T, are taken from (3.2) and (4.3).
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Foran y € D,

M) =K % 2 ({01, wa) € (W2 s [y = waf] < r})
K K
= S Al {+ ww)w  w(wn)
(w1, w1) € (W2 and g - wa] < )

«
1 (ng) (n,)
S > (" x (X x X)

b Y ™ Yy + ww))

1<k<k'<K
Yy € [z] g, [wl] <r})

(ny0) 1
> ([ g + 7T (B (0,7))) < % te
k<h!

Using this, we see that for any = € D,

/ / min(1, [fw — w'[|”"/*)dzE (w)dr [ ()
w0 J (o)
(5.10) < M(z,r) +r7 Y21 - M(x,r))

<K '4e4 1/,

Equation (5.9) shows that, for an arbitrary positive integer K,

Jfoab :13526‘ [ [ { “}(y)du%x)

hmsup‘/ (a,y) [ n}(y)
X N-ox

where the first limit is actually over a constant sequence. By Corollary 5.7,
(5.11) and (5.10),

2

2
dp'(z),

(o r)dn(@)| < [ timsup| [ (a.y)d —Nf*a“( )| e
X X\D N—oc N
Dhgljip‘ / a,y) l gzj an]@) a2

<P (X~D)+co (K™ e+r71/2%)
<edcg (K 4e+r1/2%).
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Since ¢, K, r w ere arbitrary ve see that fx (a,z)du'(x) = 0 for every a € X, and
that p' is therefore equal to Ax. |

6. Virtually h yperbolic measures and central equivalence

In this section, we deduce Theorem 1.3 from Theorem 5.1. For an y locally com-
pact metric space Y, we let M;(Y) C M (Y) denote the finite Borel measures
onY.

LEMMA 6.1: There is a Borel map c,,: M;(R?) — —R? which commutes with
the action of the isometry group of R¢ and is invariant under scalar multiplica-
tion: that is, if F: R? — —=R? is an isometry of RY and t > 0, then

(6.1) cm(p) = F o ey (tpF).

Remark 6.2: For measures p € M;(R?) which have finite first moments, the

vector of moments
cm(p) = (/Ildp(xlv"'7xd)7'"7/Iddp('r17"'7Id)> € ]Rd

would satisfy all these requirements. Unfortunately, there are measures for
which this naive definition of center of mass does not make sense; the lemma
should be interpreted as an alternative, generalized notion of a center of mass
which works for any measure in M ;(R?).

Proof: For a gien r,e > 0, and for every p € M;(R?), let
Snelp) = {z € R : p(B(,7)) > <},

are(p) = /S @), mecle) = (5 (0)

ar'.s(p)
my = (p)
invarian t under the action of an isometry group ofR? on M;(R?). In order to

Note that the maps p — m, .(p) and p — , the latter when defined, are

get a map ¢,, which is defined everywhere we arbitrarily fix r» > 0, set

’I’L,«(p) = min{n : 'rnnl/n(p) > O} aT(ﬂ) = Qr1/n, (p) 7nT(p> = Myr1/n, (p>7

and put ¢, (p) = %' .

Proof of Theorem 1.3: We first show that for every a-invariant measure u
which is singular with respect to the Haar measure Ax, there is a virtually
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hyperbolic measure ' which is centrally equivalent to it. Indeed, consider the
map 7: X — =X defined by

T(x) = mocm(ps) + 2.

Let X' be the subset of full measure of X in Proposition 4.5. Then for any
x € X' we have that

Toa(r) =70 Cm(ltaz) + ax = a(m o Cp(pz)) + ax = avo 7(x)
where the second equality follo ws from (4.13) and (6.1).Similarly, by (4.14),

T(x) =mocu(ps) +T =70 Cm(pyfﬂ-(w)) +z
(62) =1TmTo cm(eKu (va) . pyfﬂ(w)) +x
= 1o Cm(pyT) + 7 = T 0 Cnlpy) + 1+ 7(w) = 7(3)

for anyz,y € X' with y — 2z = n(w) € X, By setting p/ = pur !

w eget a
new a-invariant probability measure on X which is clearly centrally equivalent
to p. The a-invariant set Y = 7(X') C X is analytic and has full y'-measure,
and (6.2) implies that Y intersects each central leaf in at most one point. By
choosing an a-invarian t Borel subsetZ C Y with p/(Z) = 1 we see that u' is
virtually hyperbolic.

We no w specialize to the case where p is ergodic. The map 7: X' — —
WO defined by 7*(2) = —cm(ps) (50 x = 7(x) + m o 7" (x)) satisfies that
™ (az) = Br*(z) C I't*(z) for every x € X' (where I is defined in (3.5)),
and the ergodicity of p and the compactness of I' together imply that there
exist an element w* € W so that for p-almost every z € X it holds that
m*(x) € Tw* = {Mjw* : v € T}.

For every v € I' we define a map 7,: X' — X by

7 (@) = T(a) + M, 7" (),

and let yu, = pr ', Then p, = p with e € I the identity, and

// * :\Tr(w*) = /Fliwd%

with ;\ﬂ(w*) as in Theorem 1.3. Since the iden tityis in the support of Haar
measure on I', and since the map v — p., is continuous with respect to the weak*
topology, it is an ergodic component of ' * :\W(w*) in the sense of Theorem 1.3.

For every v € ' w ewrite M w* as M w* = (yw),v € S) with w} = 0
for every v € S~ SO (cf. (3.3)). Similarly we set 7*(x) = (7*(x),) for ev ery
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x € X", Then there exists, for every v € S with w? # 0, a well-defined map
fo: X' — =C with

@)y = fu(z)wy
for every x € X", where we are identifying K, with C (cf. (2.18)). Since f, is
ob viously an eigenfunction ofa for every v € S(© with w) # 0, we have arriv ed
at the following alternative: either the map = — 7 o ¢, (x) =  — 7() is zero
almost everywhere, which implies that = p’, hence virtually hyperbolic, or u
is not weakly mixing; indeed, this argument shows that the point spectrum of p
(more precisely: the point spectrum of the action of a on L?(X, 8, ut)) contains
some eigenvalue of « of absolute value 1. |

7. Central leaves and closed inv ariart subsets
This section is devoted to proving the following topological analogue to Theorem

o.1.

THEOREM 7.1: Let a be a nonexpansive, ergodic and totally irreducible auto-
morphism of a compact connected abelian group X . Then any closed a-invariant
subset Y C X intersects every central leaf in a compact subset of the leaf.

The key to this theorem is the follo wing lemma in which w ecall a subset
A Cc WO R-separated if ||z — y|| > R for any tw o distinct elemerts z,y € A.

LEMMA 7.2: Let a and X be as in Theorem 7.1. Then for any ¢ > 0 there
exist positive integers R, K so that for any R-separated subset A C W(®) with
at least K elements, the set

A= [ a"(x(A) + x0)

is e-dense in X.

Proof: Let {f1,..., fr} be a partition of unity of X (i.e., a set of nonnegative
continuous functions so that Zle fi = 1) so that the support of each f; has
diameter at most . Clearly, to show that A is e-dense it is sufficient to find
some probability measure p supported on A so that

/fidp>0
X

for every i = 1,...,k. Since the linear span of X is dense in C'(X), there exists
a finite subset = C X containing the identity element 0 € X so that for each i
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w e can find an appraimation
fil@) = Y uiala,a)
a€l

to f; in the linear span of = so that

i = fillso < Il £ill1/100.

Let 2" = 2\ {0}.
We denote by ¢, the constant in Lemma 5.6 and Corollary 5.7 and define R,
K by
R* = K = 100 max (7&@ [us.0ca] )
i 1£illy
Now suppose that A C W(® is an R-separated set of cardinality > K and

g € X is arbitrary. We define

=

-1
1 _ 1 ;
T=0 E (5w-, p= (%ﬂ- 1)T—x07 PN = N 10041-,
3

I
=)

where §,, is the point-mass at w. For every N, py is supported on A, and if N
is large enough, then

<o, / / min(1, Jw — w'[| /) dr (w)dr (w')

<2 (K~ 4+ R7Y?%) = 4¢, K1

[@.don(@

for ev erya € Z.
For N sufficiently large we obtain that

\/ﬁdm/ﬁduaeza

<4AK Y uiacal < NIfilly /25,

a€cl’

Ujq /(a, x)dpn

But then

[ tidox| > | [ o

fori=1,...,k, and we are done. |

= [Ifelly /20 > I fill, /2> 0

5l 100> | [ Fude

Proof of Theorem 7.1: Suppose that Y C X is a-invariant and closed, and
that the intersection of ¥ with some central leaf X (©) 4+ 24 is not compact. Fix
awp € () and take C =[x~ (V) — wo] N W),
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By our assumptions, C' is a closed unbounded subset of W(®) . Let ¢ > 0 be
arbitrary, and let K, R be as in Lemma 7.2. Take A to be a finite R-separated
subset of C' of cardinality > K. Then the set A C X defined in that lemma is a
subset of Y and is e-dense. So Y is e-dense, and since ¢ was arbitrary, Y = X.
|

References

[1] J. W. S. Cassels, Local Fields, Cambridge University Press, Cambridge, 1986.

[2] M. Einsiedler and K. Schmidt, Irreducibilit y,homoclinic points and adjoin t
actions of algebraic Z%-actions of rank one, in Dynamics and Randomness
(San tiago, 2000), Nonlinear Phenomena in Complex Systems, 7, Kluwer
Academic Publ., Dordrecht, 2002, pp. 95-124.

[3] B. Host, Nombres normaux, entropie, translations, Israel Journal of Mathematics
91 (1995), 419-428.

[4] B. Host, Some results on uniform distribution in the m ulti-dimensionaltorus,
Ergodic Theory and Dynamical Systems 20 (2000), 439-452.

[5] A. Katok and R. J. Spatzier, Invarian t measures for higher-rank hyperbolic
abelian actions, Ergodic Theory and Dynamical Systems 16 (1996), 751 778;
Corrections, 18 (1998), 507-507.

[6] Y. Katznelson, Ergodic automorphisms of T™ are Bernoulli shifts, Israel Journal
of Mathematics 10 (1971), 186-195.

[7] Y. Katznelson, An Introduction to Harmonic Analysis, Do ver Publications Inc.,
New York, 1976.

[8] D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophan-
tine approximation on manifolds, Annals of Mathematics 148 (1998), 339-360.

[9] D. J. Rudolph, x2 and x3 invariant measures and entropy, Ergodic Theory and
Dynamical Systems 10 (1990), 395-406.

[10] K. Schmidt, Automorphisms of compact abelian groups and affine varieties,
Proceedings of the London Mathematical Society 61 (1990), 480-496.

[11] K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhduser Verlag, Basel-
Berlin—Boston, 1995.

[12] A. Weil, Basic Number Theory, Springer-Verlag, Berlin-Heidelberg—New York,
1974.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [7200.000 7200.000]
>> setpagedevice


